
Saarland University
Department of Computer Science

Master’s Program in Computer Science

Master Thesis

A Learning-Based Approach for
Efficient Visual SLAM

Submitted by

Jonas Scheer1

Supervisors

Dr. Mario Fritz2

Dr. Oliver Grau3

Reviewers

Dr. Mario Fritz2

Prof. Dr. Christian Theobalt2

December 31, 2015

1Saarland University, Saarbrücken, Germany
2Max-Planck Institute for Informatics, Saarbrücken, Germany
3Intel Visual Computing Institute, Saarbrücken, Germany

ii

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Declaration of Consent

I agree to make my thesis (with a passing grade) accessible to the public by
having them added to the library of the Computer Science Department.

Saarbrücken, December 31, 2015
Jonas Scheer

iii

iv

Acknowledgment

Before I begin, I want to thank my supervisors, Dr. Mario Fritz and Dr. Oliver
Grau for having this great opportunity. By getting advice from Oliver with his
experience in both research and industry as well as Mario with his expertise of
working at the Max-Planck-Institute, I had the chance to profit from excellent
and constant guidance as well as critical comments.
I would also like to thank my friends and former working colleagues Farshad
Einabadi, Daniel Pohl, Carlos Fernandez De Tejada and Stanislav Eppinger
for useful discussions, suggestions and especially a nice and enjoying working
atmosphere.

v

vi

Abstract

Visual SLAM (vSLAM) and structure from motion (SfM) are well-established
techniques. However, facilitating them on mobile devices brings the problem of
power consumption and battery drain. For this reason, making the processing
steps of SfM/SLAM less computationally expensive, is still of big interest.

The first step of each SfM or vSLAM pipeline is feature extraction. To improve
the following processing steps for SfM, Hartmann et al.[1] trained a classifier to
filter out features, which are unlikely to have a match in another image. Nev-
ertheless, this classifier is not optimized for vSLAM, but 2D feature matching.

The purpose of this work is to investigate the limits of the classifier created
by Hartmann et al. We create a feature score that achieves the same matching
performance, but is easier to compute. Furthermore, we train an own classifier,
better suited for vSLAM. A random forest is trained to keep features that are
part of a valid 3D reconstruction and have a long track length. Thus, our clas-
sifier is able to hand over fewer features to the subsequent SLAM/SfM pipeline
but does not degrade tracking accuracy. Additionally, our classifier decreases
the number of outliers within a 3D reconstruction. We compare our classifier
with the one created by Hartmann et al. as well as a feature selection by in-
creasing the DoG threshold for sift features. In particular, we demonstrate that
our method is able to generate a 3D reconstruction with tracked camera poses,
by approximately using 50% fewer features than the baseline methods.

vii

viii

Contents

I Introduction & Basic Concepts 1

1 Motivation 3

1.1 Applications . 3

1.1.1 Augmented Reality . 3

1.1.2 Structure from Motion . 5

1.2 Challenges for Mobile Devices . 5

1.3 Contribution of the Thesis . 6

1.4 Outline . 7

2 Related Work 9

2.1 Advancements in visual SLAM 9

2.2 SLAM in a nutshell - PTAM . 10

2.2.1 Initialization . 10

2.2.2 Keyframes and Map Building 11

2.2.3 Camera tracking . 12

2.2.4 Limitations of PTAM . 13

2.3 Significant Feature Selection . 13

2.3.1 Utilize Symmetry Properties 13

2.3.2 Good Features to Track for Visual SLAM 14

2.3.3 Predicting Matchability 15

2.4 Benefits of Feature Classification 17

2.5 Deficits of Matchable Features 19

3 Preliminaries for Feature Selection 21

3.1 SIFT . 21

3.2 Feature Matching . 22

3.3 Random Forest . 23

3.3.1 Decision Trees . 24

3.3.2 Splitting Criterion - Gini Impurity 25

3.3.3 From Decision Trees to Random Forest 25

ix

x CONTENTS

II Feature Classification for Visual SLAM 27

4 Classification with Feature Scores 29
4.1 Next-Frame Score . 29
4.2 Intra-Frame Score . 30
4.3 Comparison of Feature Scores . 30

5 Long-Track Features 35
5.1 Track Length Criterion . 35
5.2 Training of the SLAM Classifier 37

6 Used Software and Tools 41
6.1 VL Feat . 41
6.2 Bundler . 41
6.3 Theia SfM . 42
6.4 Random Forest Library . 42
6.5 Processing Pipeline Overview . 43

7 Evaluation and Results 45
7.1 Datasets . 45
7.2 Baseline Methods . 46
7.3 Track length Comparisons . 47
7.4 Feature Reduction . 48

7.4.1 Feature Reduction per Frame 48
7.4.2 Maximum Feature Reduction 49
7.4.3 Point Clouds . 50
7.4.4 Outlier Reduction . 52
7.4.5 Feature Distribution . 53

7.5 Camera Pose Accuracy . 54
7.6 Timings . 55

III Conclusions and Outlook 57

8 Future Work 59

9 Conclusion 61

IV Appendix 63

List of Figures 70

Bibliography 73

Part I

Introduction & Basic
Concepts

1

Chapter 1

Motivation

Most modern mobile devices are equipped with cameras but currently, these
are primarily used for taking photographs or capturing videos. The increasing
processing power available in mobile devices enables them for more sophisticated
tasks, such as augmented reality, camera tracking or structure-from-motion.
Such applications use camera images to get information about their environment
as well as the pose of the camera within this environment. Although, mobile
devices benefit from a rise in computational power, the mentioned use cases
bring them quickly to the limit. Additionally, battery capacity limits the broad
application of more sophisticated techniques on mobile devices.

1.1 Applications

1.1.1 Augmented Reality

Augmented reality (AR) applications sense their environment and fuse virtual
content into a physical world. AR applications for smartphones or tablets, for
example, overlay the camera image with useful information to support the users
in specific tasks. In figure 1.1, a building overlays the camera image of a smart-
phone and by moving it around, the user can view the building from different
perspectives. To make this work, the AR-Application detects a predefined pat-
tern within the camera image. In the given scenario of figure 1.1, this is a
black-white square pattern, printed on a white piece of paper. After finding out
the position of certain pixels of the pattern within the camera image, we can
relate them to real world 3D-coordinates because we know the dimensions of the
pattern. This gives us 3D-2D correspondences with all 3D-coordinates lying in
a single plane. Therefore, we can estimate a homography and finally determine
the camera pose relative to the physical pattern. Given the determined pose, we
now can adjust a virtual camera with respect to the new pose. For example, we
can change the camera transformation matrix in openGL or directX and render
a virtual object afterwards. By doing so, we render the object with respect to
the same camera pose as the physical camera, which gives us the effect shown

3

4 CHAPTER 1. MOTIVATION

Figure 1.1: Augmented Reality with predefined marker using ARToolKit [2]

in figure 1.1.

While such AR-Applications are already flawlessly working for mobile devices,
a more challenging task is to omit the use of a fiducial marker, like the black-
white pattern. For that purpose, the smartphone has to orient itself within a
previously unknown environment. To find out the camera pose, image features
are extracted out of the camera image and tracked in subsequent frames. Due
to the fact that extracted features will not necessarily lie in a 2D-plane, the
estimation of a homography is insufficient and needs to be replaced with var-
ious more difficult steps. Systems that do not know the physical 3D world in
advanced, but have to be tracked in such an environment are called SLAM sys-
tems. SLAM stands for Simultaneous Localization and Mapping thus, a map of
the environment is created while, at the same time, the position and orientation
of the system are estimated. An example of a SLAM system will be described
in more detail in section 2.2.

While there are not many good to go, mobile SLAM systems, the hardware is
already available whose full potential can be exploited by SLAM. With Google
Tango a platform is offered which is explicitly designed for SLAM. Tango tablets
or smartphones have built-in depth sensors like the Microsoft Kinect which are
used to sense the surrounding environment and to track the device’s position
in 3D space. In 2015, Microsoft announced the HoloLens, a smartglasses device
similar to Google Glass. While the processing power of Google Glass is not
sufficient for AR, one of the main features of HoloLens is to perform SLAM like
tasks.
An example of a professional markerless camera tracking system is ncam [3].
ncam is designed for the broadcast and filmmaking industry and consists of a
multi-sensor bar mounted on a camera and an associated tracking server. By
fusing different sensor data and evaluating them on the server, real-time camera
tracking is possible. This enables a director to see instantly virtual characters

1.2. CHALLENGES FOR MOBILE DEVICES 5

within the scene he is currently capturing. Due to ncam needs a dedicated
tracking server as well as additional hardware its main priority is not to be used
in a mobile scenario or as a mainstream device.

1.1.2 Structure from Motion

Besides augmented reality, another more sophisticated task for systems using
cameras is structure from motion (SfM). By moving a camera in space, we
want to sense the 3D environment to get a detailed 3D reconstruction. This is
done similar to SLAM by tracking the camera pose, finding feature correspon-
dences in subsequent frames and relate them to the 3D world. Whereas SLAM
concentrates more on camera tracking as accurate as possible, SfM focuses on
obtaining a 3D reconstruction as detailed as possible. Furthermore, SfM is in
general performed as an offline batch process, whereas for SLAM, tracking the
camera in real-time is one of the main objectives. Thus, in SfM having as many
features as possible leads to a better 3D reconstruction. On the other hand,
for camera tracking in SLAM, we want as little features as possible to speed up
computation time. Another difference between SfM and SLAM is the fact that
in a SLAM scenario images arrive sequentially one after another. SfM does not
assume any ordering for the captured images. A ready to use SfM open-source
software is Bundler [4] which was also used in this thesis.

1.2 Challenges for Mobile Devices

Mobile devices have a major bottleneck in contrast to stationary system. While
CPU power is not the primary concern, battery life will bring essential limi-
tations. Using batteries with a higher capacity is not a solution because this
will increase the dimensions of our devices and will add weight. For example
by adding batteries to make HoloLens last longer for augmented reality, will
indeed make it unsuitable for most users. Thus, to use a camera of a mobile
device for more computationally intensive applications, we have to improve the
algorithms we are using to reduce CPU usage and consequently battery drain.

The first step of every SLAM or SfM system is to extract features out of cap-
tured images. For this purpose, there are several feature detectors available.
Some of the most popular ones are [5] [6] [7] and [8]. [5] is currently the state
of the art feature extractor and an example of extracted sift features is shown
in figure 1.2. On the left side, we see an image where all possible sift features
(n=15986) have been extracted. On the right side, a much smaller feature set
is obtained.
In general we find a lot of image features, but many of them will give redundant
information for SLAM or SfM. Consequently, by pruning redundant features
the remaining SLAM/SfM pipeline has fewer data to process. Additionally, a

6 CHAPTER 1. MOTIVATION

Figure 1.2: Left: all extracted image features (n=15986). Right: pre-selected
set of features.

reduction of images could be taken into account, but for SLAM as a real-time
application, each image is needed to achieve the desired results. For this reason,
a reduction of features is a good starting point, if you want to improve SLAM
or SfM. Fewer data has to be processed, which leads to a lower CPU usage and
in particular for mobile devices, less battery drain.
Most SLAM and SfM systems use an outlier detection to discover features that
resulted in a 3D point but do not fit into the 3D model. While this step makes
the 3D model more robust, not all outliers are detected. Thus, the resulting is
inaccurate and also can perturb camera tracking. Besides gaining a computa-
tional speed-up with fewer features, also a better camera pose estimation can
be achieved. A feature reduction method should remove as many outliers as
possible while retaining features that contribute to camera tracking.

1.3 Contribution of the Thesis

The main purpose of this thesis is to make SLAM/SfM less computational ex-
pensive by using fewer, but more significant images features. This is achieved
with the help of learning based methods. To improve SfM, Hartmann et al.
created a classifier [1], that selects features that are likely to have a match in
another image. They demonstrated a speed-up for feature matching in SfM,
due to the significant reduction of features.
In this thesis, the limitations of [1] are investigated. We propose a feature score,
which can be used to classify features. This score is simple to compute and gives
comparable performance as the method of Hartmann et al.
Additionally, we propose the assumption that a further reduction of features
can be achieved by using only features that belong to a valid 3D model and
have a long track length. We compare properties of long track features with the
features that are selected by the classifier of Hartmann et al.
Finally, we train a random forest that selects features, which follow the long
track criterion. We investigate, how many features are sufficient to create a
3D reconstruction and to get the camera poses for all used images. The feature
reductions also leads to a decrease of outliers, while more significant features are

1.4. OUTLINE 7

preserved. Furthermore, we explore the track length of the features preserved
by the different classifiers.
As a baseline for our classifier we use the method of Hartmann et al. as well as
a feature reduction, achieved by increasing the DoG threshold for sift features.
All contributions of the thesis are listed below:

• Feature Score competitive with [1].

• Criterion for SLAM: preserve long-track features

• Learn random forest

• Evaluation of classifier by investigating:

– Feature reduction

– Decrease of outliers

– Track length of features

– Measure the accuracy:

∗ Reprojection error for 3D reconstruction

∗ Rotation/translation error for registered cameras within 3D re-
construction.

– Baseline methods:

∗ High DoG threshold for sift

∗ Classifier of Hartmann et al. [1]

1.4 Outline

The following document is divided into 3 parts. Part I gives a short introducing
and investigates related literature of SLAM and feature selection. Especially
the baseline classifier [1] is explained in more detail with its limitations. Ad-
ditionally, the basic concepts, for the remaining thesis are presented. Part II
starts with the feature score, looks at long-track features in more detail and
explains the training our classifier. The last two chapters of Part II deal with
the evaluation of the constructed classifier and present the tools used during
this work 6. To finish the thesis, we give a short outlook for future work and
summarize the results.

8 CHAPTER 1. MOTIVATION

Chapter 2

Related Work

To make SLAM more computational efficient regarding CPU workload, the next
two chapters summarize recent techniques used for camera tracking and 3D
reconstruction. In particular, the main building blocks of a SLAM system are
explained, such that the benefit of feature reduction is emphasized. Afterwards,
three methods for selecting more significant image features are analyzed. Most
notably, the work of Hartmann et al. [1] focuses on SfM and shows a huge speed-
up for the feature matching procedure. These advantages are investigated in
more detail as well as its limitations that justify our approach to learn long
track features.

2.1 Advancements in visual SLAM

In the previous century, SLAM techniques were mainly used, to track a robot in
an unknown environment and to give him the opportunity to navigate through
unexplored terrain. For this purpose, robots were equipped with external sen-
sors as in [9]. An ultrasonic sensor, to obtain information about the physical
world, was attached to a robot. For a certain point in time t the robot can
use the sensor information st and compare it to previously obtained data st−1
to find out its new position. After cameras had started becoming smaller and
cheaper, the ultrasonic sensor (or other sensors) was replaced by a conventional
camera and SLAM was performed using camera images. At the beginning of
visual SLAM, so called Filtering methods were used to hit real-time constraints.
With the help of a Kalman Filter for example, the information of several pre-
viously taken images were fused to get the position of a new image. Another
approach for estimating the camera pose (position and rotation) is bundle ad-
justment. Due to the fact that bundle adjustment is much more time consuming,
filtering methods were the dominant technique, when performing SLAM. After
computational power has grown and tasks could be separated on multi-core
platforms, bundle adjustment started catching public interest. In [10] Strasdat
et al. showed, that bundle adjustment outperforms filtering, so bundle adjust-

9

10 CHAPTER 2. RELATED WORK

ment was used in most work that followed. While PTAM [11] only uses bundle
adjustment for certain frames (Keyframes), newer systems like ORB-SLAM [6]
completely rely on bundle adjustment to get the camera pose of each frame.
More recent approaches as [12] even use RGB-IR sensors to perform camera
tracking. However, most RGBD sensors have a much more limited range in
contrast to cameras that acquire images using a wide baseline. Furthermore,
RGB-IR performs poorly in outdoor scenes under direct sunlight. To not limit
ourselves to bright, short range scenes only, we decided to stick with conven-
tional cameras instead of RGB-IR cameras.
In [13], a stereo camera system was used. By considering feature extraction,
these systems will also benefit from having a lower amount of features, due to
the remaining SLAM task are similar to the monocular setup.
To sum up, using a single camera for SLAM, will not constrain our research to a
limited amount of scenes. Furthermore, with bundle adjustment, a main build-
ing block of most modern SLAM systems is taken into account. The processing
steps of a SLAM pipeline for monocular cameras using bundle adjustment is
presented in the next section in more detail.

2.2 SLAM in a nutshell - PTAM

To understand the different SLAM processing steps and figure out the bottle-
necks, PTAM [11] is presented. With PTAM, Klein et al. created a real-time
SLAM system by separating the task of camera tracking and map building into
two separate threads. Figure 2.1 shows an example of PTAM with an estimated
ground plane and the features PTAM is currently tracking (colored dots). By
moving the camera in space, new features are added and the region in which the
camera can be tracked grows. To meet real-time requirements, PTAM is only
suited for small workspaces. In the remaining of this section the main building
blocks of PTAM are explained.

2.2.1 Initialization

In camera tracking applications with markers, as described in chapter 1 the
camera pose is determined with respect to a predefined pattern. One of the
main challenges of markerless camera tracking is to find some reference points
in the physical 3D environment, without using any predefined pattern. Thus in
SLAM, the user is not limited to a particular scene. PTAM solves this problem
by finding stereo correspondences in two images and using the five-point stereo
algorithm of [14] employing RANSAC to get an essential matrix. Using trian-
gulation, a base map can be determined which is finally refined through bundle
adjustment. To apply all these steps, the user takes one image of the scene,
moves the camera approximately 10cm to the right and takes another picture.
This procedure assures a sufficiently large baseline such that stereo correspon-
dences are likely to be found. Thus, instead of using a predefined marker, image
features are automatically extracted, matched and mapped to 3D real world co-

2.2. SLAM IN A NUTSHELL - PTAM 11

Figure 2.1: PTAM [11] during tracking image features.

ordinates. These 3D points are stored in a map and in the upcoming SLAM
steps, they are used to determine the current position of the camera.
In this first step, a large amount of extracted features and corresponding 3D
points leads to a lot of redundant information for camera tracking. This slows
down the subsequent tracking and map building steps, especially in a mobile
scenario. One of our most important contributions is to reduce the set of fea-
tures to a minimum without decreasing the tracking accuracy. Furthermore,
our approach removes many outliers that are not discovered by the outlier de-
tection build into most SLAM systems. Such outliers perturb the 3D model and
make tracking inaccurate. For this reason our approach, is already useful for
initializing the system.

2.2.2 Keyframes and Map Building

PTAM uses the concept of Keyframes to track the camera path and connect 3D
reference points of different frames. Instead of storing image features and the
resulting 3D points of each single frame, this is only done for individual images.
For an only slightly moving camera, mostly redundant information will be cre-
ated which will result in a huge waste of storage. Thus, PTAM stores image
features and 3D points together with so-called Keyframes, if the following cri-
teria are met: The time, since the last keyframe was added to the system must
exceed 20 frames. Furthermore, the camera has to move a minimum distance.

12 CHAPTER 2. RELATED WORK

This gives a minimal baseline and ensures a certain quality for new feature tri-
angulations. By adding a new keyframe, PTAM adds new 3D points to the map
and the tracked scene grows. Consequently, a keyframe consists of 3D points
already available in the map, which are used for tracking the current frame and
new 3D points which will be generated via triangulation. Finally, after a new
Keyframe was added to the system, PTAM performs bundle adjustment to op-
timize the poses of all Keyframes as well as the positions of the 3D world points.
Obviously, this approach is limited to a certain amount of 3D points. Other-
wise, the bundle adjustment step breaks the real-time constraint. By reducing
the number of used features, a larger workspace can be explored by PTAM.
Additionally, the advantages of the initialization procedure also hold for this
processing step. Adding fewer features while adding a keyframe makes subse-
quent tracking faster and fewer outliers perturb the 3D model.

2.2.3 Camera tracking

By applying the steps described in the previous sections, an already built up map
is given. For a newly acquired image, the camera pose is determined using the
map and its contained 3D points. PTAM uses a prior pose estimate by assuming
a camera movement in the current tracking step, similar to the previous tracking
step. For the last tracked camera position Ct−1 we can compute the velocity
vt−1 of the camera movement from Ct−2 to Ct−1. Using the same velocity as
well as the directional vector d = Ct−1 −Ct−2, we get the prior pose Ct for the
current tracking step. In a next step, the stored 3D map points are projected
into the camera image according to the estimated prior pose. By doing so, the
pinhole camera model can be utilized and the 3D-2D projection can be described
as in [15]:

s

uv
1

 =

αx 0 x0 0
0 αy y0 0
0 0 1 0

 ∗ [R|T] ∗

X
Y
Z
1

 (2.1)

The leftmost matrix on the right side of the equation is called intrinsic matrix
I. The matrix [R|T] is a 4 × 4 matrix consisting of a rotation and translation.
Consequently, R is a 3 × 3 rotation matrix and T a 3 × 1 translation vector.
[R|T] is in homogeneous coordinates. [R|T] is related to the camera movement
mentioned above. I includes the focal length of a camera (ax and ay) in x
and y-direction as well as the center point shift (x0 and y0) in both directions.
Thus, [R|T] moves a 3D point or the camera in space and I projects a 3D point
(X,Y, Z, 1)t to 2D image (u, v, 1)t.
After a 3D point was projected into a view, image features are extracted. Finally,
for each 3D point a feature match is searched around its 2D projection. With
the help of the projection, the feature search can be restricted to a certain
patch only. This results in 2D-3D correspondences that can be used together
with the prior pose to refine the camera position with respect to the map. To
compute the prior pose update, the reprojection error is minimized. The get the

2.3. SIGNIFICANT FEATURE SELECTION 13

reprojection error of a single pixel, the difference of a projected 3D world point
into the 2D view and its extracted image feature is computed. By summing
up all these differences or using an appropriate loss function, the final pose is
obtained by solving an risk minimization problem.

2.2.4 Limitations of PTAM

The projection of all 3D points in the current camera frame and the computation
of the camera pose update, described in section 2.2.3, limit PTAM to small
workspaces only. Thus, after a certain amount of 3D points are captured, PTAM
is not able to operate in real time anymore. Reducing the number of features
reduces the following matching computations and bundle adjustment needs to
take fewer data into account. Additionally, our method removes outliers while
reducing features. Thus, the resulting 3D map will be more accurate.
Another drawback of PTAM is the inability to detect loops. Loop closure is
only feasible in simple scenarios. While ORB-SLAM can handle loop closure
by using the bag of words approach presented in [16], improving the detection
of loops is not considered in this work. Therefore, using less but more robust
features, especially features with long tracks could lead to better visual words
and improve the bag of words method. This is indeed not in the scope of this
work.

2.3 Significant Feature Selection

features that In this thesis, an speed-up in estimating the camera position and
orientation is achieved by selecting fewer features. The processing steps of
SLAM, mentioned in the previous section become less computationally expen-
sive. Additionally, the overall robustness and tracking accuracy increases by
having a less perturbed 3D model, due to fewer outliers. In the following, three
methods are presented to select more significant features and their limitations,
when it comes to SLAM or SfM.

2.3.1 Utilize Symmetry Properties

Hauagge et al. presented an approach [17] to extract features that follow certain
symmetry properties. They discovered that images of buildings appear differ-
ently depending on when they were captured and at which scale the images
are taken. For example, having three images of a building, taken at different
scales. Image1 is a historical image while Image2 was take in entirely different
lighting conditions than Image3. For such images, SIFT will create different
feature descriptors for the same feature such that obvious feature matches will
not be found.
Hauagge et al. try to detect features with bilateral and radial symmetries. A
feature will be assigned a high score, if flipped across a symmetry axis, there

14 CHAPTER 2. RELATED WORK

is another feature with similar values. They use two different similarity mea-
surements and their results are shown in figure 2.2. If there is a feature pair,

Figure 2.2: Symmetry features based on intensity (SYM-I) or gradient (SYM-G)
values as well as SIFT features. (figure taken from [17])

perpendicular to the axis of symmetry with similar intensity values, both fea-
tures are assigned high scores. In figure 2.2, the axis of symmetry is right in
the middle of the image and features perpendicular to it can be found at the
bottom of the images SYM-I and SYM-G. For the radial symmetries, a rotating
axis through a point p is chosen, which results in circularly aligned features in
figure 2.2.
Although this approach seems to detect a perfect set of features, it can not be
directly applied to SLAM. The presented method was designed for SfM using
scenes of buildings. Images in the given scenario do follow the assumption to
have a vertical axis of symmetry in the middle of the image. However, this
assumption is not true for most SLAM scenarios. Furthermore, SLAM is not
necessarily applied to building scenes, thus to find the axis of symmetries is
not a trivial problem. Without making to many assumptions about the scene,
finding a proper setup of symmetry axis will break the real time assumptions of
SLAM. Our feature reduction method is designed for arbitrary scenes without
any predefined scene structure.

2.3.2 Good Features to Track for Visual SLAM

Zhang et al. [18] proposed a method to select good features for SLAM, which are
of high utility for camera localization. They make use of observability theory

2.3. SIGNIFICANT FEATURE SELECTION 15

by assigning a high score to a feature if it can be used to determine the new
position of a camera. Let us consider a camera movement m from c1 to c2 and
camera images I1 and I2 with corresponding features f1 ∈ F1 and f2 ∈ F2. For
given scene points p ∈ P , we can project them to I1 and I2. If we can find
features for the projected points, these features can be observed under the given
movement m. It is important that a single 3D point results in two features f1
and f2. Such features will be assigned a high observability score. The whole
system dynamics are described by Zhang et al. in a linear system of equations.
A single equation is given by the projection of one 3D world point under a
given movement to image coordinates. By using observability theory, this linear
system is transformed and a Total Observability Matrix (TOM) is built. A
system is fully observable if TOM has full rank. Finally to determine, if a TOM
has full rank, a singular value decomposition is performed.
Although it is a good idea to select only features with a high observability score,
a much simpler and less computationally expensive method can be implemented
in every SLAM system. During the initialization procedure as discussed in
section 2.2.1 or while adding new scene points as in 2.2.2, we can add a counter
to each 3D point. While tracking the camera, we can increment the counter
if there was no feature found for a given 3D point. If the counter exceeds a
certain threshold, the 3D point can be removed from our map thus, it becomes
unobservable. This overcomes the singular value decomposition computations
used by Zhang et al. Especially for high-resolution images, we get many features,
so a simpler approach is favoured.
Additionally, most SLAM or SfM systems use outlier detection, usually after
performing bundle adjustment. This guarantees that only observable 3D points
will stay in the resulting 3D model. The kind of outliers which are not discovered
by the outlier detection, but still perturb the final 3D model also follow the rules
of system dynamics. Thus, they result in a high observability and can not be
removed with the presented technique.
Zhang et al. need several frames to state if a feature has a high score or not.
Additionally, a score can be updated if a feature has a high observability in later
frames. For this reason, all 3D points are kept, not only the ones with a high
observability score. Thus, In a SLAM pipeline as described in section 2.2, all 3D
points have to be projected to a newly acquired frame. This means the following
matching procedure does not benefit from a reduced set of features. Bundle
adjustments is the first step that profits of the proposed method. However,
bundle adjustment is one of the last steps in a SLAM pipeline thus, there are no
significant improvements. Our classifier, on the other hand, improves the whole
SLAM pipeline after features have been extracted.

2.3.3 Predicting Matchability

The work of Hartmann et al. [1] builds the basis for this thesis. A classifier
was trained, with the main objective to speed up feature matching. For this
purpose, they labeled features as positive if they can find a match within the
training sequences, negative if not. With the help of this generated training

16 CHAPTER 2. RELATED WORK

data, they learn a random forest that only picks features that are likely to
have a match in another image. In the remaining part of the thesis, these
features are referred to as Matchable Features or simply Matchable. Hartmann
et al. compare their method with a random selection of features as well as an
increased DoG threshold for sift features. The resulting reduced feature sets are
shown in figure 2.3.

Figure 2.3: Feature selection results of [1]

The images show two scenes with the different features highlighted. For All
features, the sift algorithm extracts plenty of features. For Matchable features
there are much less features and the sets of features for the high DoG and the
random selection are chosen as big as the Matchable set. While the Random
selection clearly has no structure, the high DoG picks features in high-contrast
regions as on vegetation for the upper image scene. Matchable features, on the
other hand, are more concentrated around the building. The vegetation gives a
highly textured area in which it is even difficult for humans to find interesting
points. However, onto the building we have symmetric, clearly distinguishable
elements that are expected to give robust features.
Figure 2.4 shows the results accomplished by Hartmann et al. for the different
methods. They evaluate their method with matching ground truth data. This
means, for a given feature in the test dataset, we know if it is a matchable feature
or not. The detailed generation of the matching ground truth is explained in
section 2.5, because it involves some deficits when it comes to SfM or SLAM.
The ROC curve of the matchable features (green) is always better than the ROC
curves of the random selection (red) and the high DoG (blue). This shows that
a feature reduction using the classifier picks features that are likely to have a
match in another image, while the other two methods do not. The three methods
are tested on three different datasets. The PARK dataset is also shown in the
first row of figure 2.3 and contains mainly vegetation. The URBAN dataset
was captured in an Urban environment and the NOTRE DAME dataset is an
unordered collection of Notre Dame images.

2.4. BENEFITS OF FEATURE CLASSIFICATION 17

Figure 2.4: ROC curves of Park, Notre Dame and Urban dataset. Green: match-
able features. Red: random selection. Blue: high DoG. (images taken from [1])

2.4 Benefits of Feature Classification

The previous section presented the feature selection method of Hartmann et al.
In this section, the benefits of their work for SfM is explained in more detail.
Investigating the matching procedure, shows that there is a profit of fewer fea-
tures, due to fewer comparisons. To get all the feature matches in one image
pair, an exact implementation needs O(n2) comparisons, without making any
assumption on the captured scene. Nevertheless, even inexact solutions like
finding an approximated nearest neighbor (ANN) [19] or using locality-sensitive
hashing techniques [20] only need superlinear complexity. While this speeds up
feature matching, it is still not sufficient for SLAM or SfM applications. In
figure 2.5, Hartmann et al. show how feature matching benefits by using their
classifier. The left column uses all features available in an image, the right col-

Figure 2.5: Feature reduction and matching using different pruning techniques.
Hartmann et al. compare their approach [1] to feature selection using high DoG.

umn only features, for which the detector has found high DoG responses and
the column in the middle only uses features selected by the proposed classifier.
The first row shows the feature matches using ANN, but not all of them are
valid sift matches (valid sift matches are defined in more detail in section 3.1).
For this reason, Hartmann et al. try to predict which features will end up with
a valid matching partner, what can be seen in the middle column of figure 2.5.

18 CHAPTER 2. RELATED WORK

Nearly all candidates which are likely to have a suitable match are picked by
the classifier, while all others are pruned. However, using the high DoG ap-
proach more features are discarded which have a valid matching partner, but
also features are preserved which do not. Using all features, as shown in the
left column is even worse, due to the matching procedure checks many features
that do not have a match at all, thus is wasting a lot of computation time.
Hartmann et al. even examined the gained speed up for matching less fea-
tures explicitly. They performed tests on three datasets and considered the
time needed to detect features, build KD-trees which are used by ANN fea-
ture matching and also included the time to classify features when using their
method. Figure 2.6 shows the results of Hartmann et al. All three datasets

Figure 2.6: Feature matching speed up, achieved by Hartmann et al. [1].

show a huge saving of computation time when using fewer features. While us-
ing high DoG is slightly faster than the used classifier, it is less accurate. The
improvement of the classifier against using all features is 28.8% for the URBAN
dataset, 22.0% PARK dataset and eve 42.3% for the NOTRE DAME dataset.
Thus, giving the performance of the classifier as shown by the ROC curves in
figure 2.4, a huge amount of valid feature matches are preserved while the speed-
up can be up to 42.3%.

2.5. DEFICITS OF MATCHABLE FEATURES 19

2.5 Deficits of Matchable Features

After we have shown the benefits of feature reduction, especially with the anal-
ysis done by Hartmann et al. we want to discuss some limitations of their work.
The classifier of Hartmann et al. is well suited to pick features that most likely
have a sift feature match in another image. However, such features are not
necessarily of high importance for SLAM or SfM. As shown in figure 2.7, fea-
tures can have a matching partner, but do not belong the same 3D point of an
underlying scene. While there are consistent features in both images like the

Figure 2.7: Geometrically correct (green) and wrong (red) sift matches.

feature on the house, marked with a green circle, the sift algorithm also gives
wrong feature matches. The two feature pairs marked by red circles are the
best correspondences according to the matching criterium described in [5], but
geometrically they do not belong to the same 3Dfeatures that world point. A
more detailed characterisation of wrong and valid feature matches is given in
chapter 3.
Hartmann et al. did not consider these observations when creating their training
and test data. Consequently, their random forest is not able to select features
that belong to a valid 3D reconstruction and discard feature which do not. Ad-
ditionally, their evaluation method using ROC curves gives no insights about
the usability of a feature in SfM or SLAM, but only for matching.

We make use of the idea of Hartmann et al. to select features that are more
suitable for SfM or SLAM by using learning based methods. By looking at the
limitations of their classifier, we are able to present a classifier which is more ap-
propriate for the SLAM or SfM scenario. Our classifier takes only features into
account which do belong to a valid reconstruction. To achieve an even higher
feature reduction, we go one step further and pick only the features that have a
long track length. These features are not only matchable on the 2D image level
but also show greater benefits for SfM and SLAM. By focusing on long track
features, the number of features will be reduced significantly without making
camera pose estimation less accurate.

20 CHAPTER 2. RELATED WORK

Chapter 3

Preliminaries for Feature
Selection

This chapter provides the basic concepts, used in this thesis. At first, a closer
look at image features is taken in particular, the insights of the SIFT algorithm
are presented. The construction of the feature descriptor is explained as well as
the matching procedure. Additionally, some definitions for feature matching are
introduced. With their help, we can create feature scores in chapter 4 and use
them as a reference for the feature classification, proposed by Hartmann et al.
To apply learning based methods to select more significant features, a random
forest is used. For this reason, the creation and classification with the help of a
random forest is discussed in this chapter.

3.1 SIFT

Lowe created SIFT [5] with the objective to detect interesting points within an
image, which are robust against scale changes, translations and rotations. Fea-
tures are extracted with a difference-of-Gaussian approach, so interesting points
at different scales are detected. To make a feature, represented by its feature
descriptor, invariant against scale, translation and rotation changes, its local
neighborhood is examined. The neighborhood of a feature needs to be compen-
sated for scale, location and rotation. For scale compensation, the descriptor is
created on the same scale as the corresponding feature was detected. Due to
the neighborhood is always relative to a given feature the location of a feature’s
neighborhood is automatically compensated. For a rotated neighborhood the
dominant orientation is extracted. After rotating the neighbourhood according
to this direction, the feature is robust against rotational changes.
For a given image feature and its compensated neighborhood a feature descrip-
tor can now be computed. In a first step, the gradient for each pixel in a
16×16 neighborhood is calculated. These obtained directional informations are
summed up in a 4× 4 directional histogram, using gaussian weights to control

21

22 CHAPTER 3. PRELIMINARIES FOR FEATURE SELECTION

the influence of more distant pixels. This results in 16 histograms for 8 direc-
tions which gives us a feature vector of size 128. To obtain a unit vector, the
feature vector is normalized. Figure 3.1 illustrates the feature descriptor compu-
tation in a 8× 8 neighborhood and the accumulation to a 4× 4 histogram. The
image gradients in the 8× 8 patch result in a 4 × 4 histogram. To summarize,
the sift feature descriptor is a 128 dimensional vector and contains orientational
information of its neighbouring pixels.

Figure 3.1: Feature histogram for a 8× 8 neighborhood. (figure taken from [5])

3.2 Feature Matching

After extracting image features, SLAM or SfM applications want to find them
again in another image. This is done by comparing the feature descriptors in
both images. Feature matching tries to minimizing the Euclidean distance to
find the most similar feature descriptors in two images. This gives us the Nearest
Neighbour and the Second Nearest Neighbour of a feature:

Definition 3.1 (Nearest Neighbour).
For two images I1 and I2, the Nearest Neighbour for feature feat1 ∈ I1 with
descriptor d1 is the feature feat2 ∈ I2 with descriptor d2, for which holds:

NNI2(feat1) = min
feat2∈I2

{‖d1 − d2‖}

NNI2(feat1) will also be abbreviated with NN(feat1) or simply NN .

Definition 3.2 (Second Nearest Neighbour).
Given a feature feat1 ∈ I1 and its Nearest Neighbour NN ∈ I2. For the Second

3.3. RANDOM FOREST 23

Nearest Neighbor NN2 ∈ I2 of feat1 holds:

NN2(feat1) = min
feat∈{I2\NN}

{‖d1 − d2‖}

NN2I2(feat1) will also be abbreviated with NN2(feat1) or simply NN2.

We use NN and its value determined by the euclidian distance of its descriptor
interchangeably: NN = ‖NN‖ = ‖dNN‖. NN2 is always greater or equal to
NN , otherwise NN2 would be the best match. The second nearest neighbor is
used to discard non-unique matches. For example in an image of a checkerboard,
you can match a feature multiple times within the other image. Without having
an additional procedure which is, for example, aware of the structure of the
features, matching can not be done unambiguously. Hence, for real world scenes,
features might be similar but not completely the same. The nearest neighbor
is used to detect the unambiguously of a feature. By computing the ratio r of
two features as in equation 3.1, you can prune features that are very similar to
some others.

r =
NN

NN2
=
‖dNN‖
‖dNN2‖

(3.1)

Thus, you take the euclidian norm of the descriptors of both NN and NN2
and compute the ratio. If the best match and the second nearest neighbor
have nearly equal values, the ratio comes close to 1. If they differ, the ratio
becomes smaller. To reject features that might be unambiguous, only features
with a ratio lower than a certain threshold are preserved. For this reason a valid
match is defined as follows (as suggested in [5]):

Definition 3.3 (Valid Match).
Given the nearest neighbor NN and the second nearest neighbor of a feature f ,
than f is a valid feature, if it passes the ratio test:

r =
NN

NN2
< t

For some threshold t.

Hartmann et al. used a threshold of r = 0.8 and we follow their example.
Nevertheless, our approach is more robust against changes, due to the features
we use fro training, as presented in section 5.2. Our features will belong to a
valid 3D reconstruction. Thus, a lower ratio threshold will give more features
that are pruned again, if they can not be assigned to 3D world points. Only a
threshold which is too high can lead to different results. By doing so, features
that belong to a 3D model can be lost.

3.3 Random Forest

Similar to Hartmann et al, a random forest [21] is used for feature classification.
A random forest consists of several decision trees and is trained in an offline

24 CHAPTER 3. PRELIMINARIES FOR FEATURE SELECTION

process. During training of a random forest, bootstrap aggregating is exploited
to avoid overfitting and reduce variance. For our classifier we use the same
configuration as Hartmann et al. and limit the depth of the random forest to
25. We use the library of Stefan Walk to produce a random forest and perform
classification, which is explained in more detail in section 6.4.
In the following sections, training and classifications with the help of a random
forest is explained in more detail.

3.3.1 Decision Trees

To understand how a random forest works, learning with a single decision tree
must be explained first. A decision tree is a rooted tree, for which in each non-
leaf node, a decision according to a certain features attribute is made. For the
tree in figure 3.2 the different attributes are the weather conditions: outlook,
humidity and windy. Depending on the attributes of a test feature, a decision
can be made. In section 3.1 the sift descriptor is explained which is used as

Figure 3.2: Decision tree with weather conditions as feature attributes.

image feature. This leads to a 128 dimensional vector that is used to traverse the
decision tree which gives a categorization for it. To create a random forest from
a set of training data, a certain feature attribute is considered for all features.
According the different values of these attributes, a split criterion is created.
The mostly used split metrics are the variance reduction as in [22], the entropy
[23] as a measure of information gain of the Gini impurity as described in section
3.3.2. After a split criterion was created for a node, the remaining attributes
can be used for creating additional splitting nodes. The most valuable attribute
is chosen as root node and the remaining nodes are chosen with decreasing
importance for larger depth. To find out the importance of a node, the entropy
of a attribute can be computed. This procedure results in a decision tree that
can be used to categorize a feature of the test dataset.
The main problem of decision trees is that they can grow very deep and tend to
overfit. This problem is solved by using several trees trained on different parts

3.3. RANDOM FOREST 25

of the same training set. Each tree can vote for a category and aggregating all
votes gives the final classification of a feature.

3.3.2 Splitting Criterion - Gini Impurity

The gini impurity is a measure of misclassification and is used by the CART
algorithm [22]. The gini impurity is measured as follows:

I(f) =

m∑
i=0

fi ∗ (1− fi) (3.2)

For a given set of items i ∈ {1, 2, ..,m} (feature attributes in our case). fi is the
fraction of items having the value i. Thus, the gini impurity for a set of feature
attributes is computed by summing the probability fi of having such a attribute
value times the probability 1−fi of a mistake in categorizing this attribute. By
rewriting equation 3.2, the misclassification property can be see more easily:

m∑
i=0

fi ∗ (1− fi) =

m∑
i=0

(fi − f2i) =

m∑
i=0

fi −
m∑
i=0

f2i = 1−
m∑
i=0

f2i (3.3)

which leads to:

1−
m∑
i=0

f2i =
∑
i6=k

fi ∗ fk (3.4)

3.3.3 From Decision Trees to Random Forest

Instead of a single decision tree, multiple trees are created based on several
random decisions. While creating a single tree, a random sample of features
with replacement is chosen out of the training dataset. According these fea-
tures a attribute is chosen which is of high importance, e.g has a high entropy
as mentioned in the previous section. However, not all attributes are taken
into account, but only a randomly chosen subset of attributes. Based on the
randomly selected features as well as the randomly chosen attributes a split cri-
terion is computed (e.g by gini impurity) and a tree node is created. By using
this procedure, several decision trees are generated. To sum up, the different
steps for creating a tree are listed blow:

1. Sample N features at random with replacement

2. to create a node:

(a) Sample M feature attributes

(b) take the attribute that provides the best split (according entropy)

(c) compute gini impurity for chosen attribute

(d) use gini impurity as split criterion

26 CHAPTER 3. PRELIMINARIES FOR FEATURE SELECTION

Part II

Feature Classification for
Visual SLAM

27

Chapter 4

Classification with Feature
Scores

In this chapter we derive two metrics (feature scores), which are used to rank
features. The presented scores measure the matching quality with respect to
the next frame in an image sequence (Next-Frame Score) or the uniqueness of
the feature within a single frame (Intra-Frame Score).
We check the performance of these scores and compare them with the features,
selected by the method of Hartmann et al. Furthermore, the track length is
investigated for the Intra-Frame Score as well as the classifier of Hartmann et
al. While non of the methods is well suited for preserving long track features,
this is explored in more detail in the next chapter.

4.1 Next-Frame Score

With the Next-Frame Score Snext, we rate features that can be found in the
next frame of an image sequence. By doing so, we exploit the definitions 3.1
and 3.2 of the nearest neighbour and the second nearest neighbour of a feature.
After computing the ratio as in equation 3.1, a metric to a measure a feature
can be created.

Definition 4.1 (Next-Frame Score).
Given an image sequence. For an image feature with nearest neighbour (NN),
second nearest neighbour (NN2) with respect to the next frame within the se-
quence, the Next-Frame Score is defined as follows:

Snxt = 1− NN

NN2
= 1− r

With r as in equation 3.1.

Thus, we exploit the ratio r as proposed in [5] to detect good matches, with

29

30 CHAPTER 4. CLASSIFICATION WITH FEATURE SCORES

the additional restriction of NN and NN2 computed from the next frame of an
image sequence. In contrast to section 3.1, a small ratio also gives bad feature
ratings.

4.2 Intra-Frame Score

The Intra-Frame Score only uses the information available in the same frame
as the feature was found. For comparison reasons it would be advantageous to
apply the Next-Frame Score, replacing the next frame in an image sequence by
the same frame. However, due to the definition of the Next-Frame Score this
always results in a score value of 1. Obviously, the best match of a feature by
matching an image to itself is the same feature again. For equation 3.1 the
nominator has a value of zero: ‖dNN‖ = 0. Hence, the Intra-Frame Score would
always be 1. For this reason, we exploit to use the second nearest neighbour to
compute the Intra-Frame Score:

Definition 4.2 (Intra-Frame Score).
For an image feature with second nearest neighbour (NN2) computed from the
same image, the Intra-Frame Score is defined as follows:

Sint = NN2− t

For some threshold value t.

By choosing the threshold appropriately, a negative Intra-Frame Score indicates
unambiguous features.

4.3 Comparison of Feature Scores

The performance of the SfM classifier of Hartmann et al. is now compared
with the two, previously proposed metrics: Next-Frame Score and Intra-Frame
Score. For the Next-Frame Score a threshold of 50, 000 was used. Figure 4.1
shows a ROC curve for the classifier of Hartmann et al, classification with Next-
Frame Score and classification with Intra-Frame Score. The same ground-truth
data is used as by Hartmann et al. To get this, the features are separated
into matchable (positive) and non-matchable (negative) features. A feature is
labeled positive, if there is a feature match according to definition 3.3 within the
13 preceding and 13 subsequent images. Having this matching ground truth,
the classification results of Snxt, Sint and the method of Hartmann et al. are
computed. True-Positive TP , False-Positive FP , True-Negative TN and False-
Negative FN classifications are summed up and the True-Positive rate (TPR)
as well as the False-Positive (FPR) rate are computed as follows:

TPR =
TP

P
=

TP

TP + FN
(4.1)

4.3. COMPARISON OF FEATURE SCORES 31

TPR =
FP

N
=

FP

FP + TN
(4.2)

By thresholding FP , False-Positives and True-Positives are plotted against each
other. While the Next-Frame Score only performs slightly better than a ran-

Figure 4.1: ROC curves of [1] (green), Next-Frame Score (blue) and Intra-Frame
Score (red). x-axis: False-Positive rate. y-axis: True-Positive rate

dom selection of features, the Intra-Frame Score can be used as a meaningful
classifier. Figure 4.2 shows, how the Intra-Frame score selects features. On the

Figure 4.2: Classification of features. Left: All image features. Middle: Classi-
fier of [1]. Right: NN2 score.

left side, there are all sift features found in the image. The image in the middle
shows the features picked by the SfM classifier and the right image the features
selected with the Intra-Frame Score. As you can see, the SfM classifier as well
as Intra-Frame Score selected features appearing on structural elements. Both
pick many features on the handrail, but only very little on the grass.
The Intra-Frame metric gives similar results as the classifier of Hartmann et al.

32 CHAPTER 4. CLASSIFICATION WITH FEATURE SCORES

Nevertheless, computing the Intra-Frame score is very time-consuming, due to
the O(n2) matching complexity. However, as mentioned in section 2.4, using an
ANN approach decreases computation time significantly. In table 4.1 the time
to create a hash table as well as the time needed to query the hash table and
query the SfM classifier is shown:
For feature sets of approximately 18000 or smaller, the classifier is even slower

num features build hash-table query hash-table total hashing query classifier
2,059 0.015008 0.008311 0.023 0.032
3,316 0.023629 0.007853 0.031 0.051
9,415 0.068592 0.042828 0.111 0.144
17,812 0.125736 0.132377 0.258 0.273
21,226 0.150134 0.257036 0.407 0.316
42,852 0.301039 0.823134 1.124 0.652

Table 4.1: Computation time of ANN and random forest of [1].

than the ANN approach. To prevent the feature set of becoming too large, the
DoG threshold for sift can be adjusted, such that approximately 18000 features
are extracted. Afterwards, the Intra-Frame Score can be used as a classifier that
has the same speed and performance as the classifier of Hartmann et al.
Using the Intra-Frame Score to improve matching for SLAM gives slightly differ-
ent results. For SLAM, feature matching is done by using a prior pose estimate
and then project 3D points into the new frame as discussed in section 2.2.3.
Thus, the previously O(n2) matching complexity comes down to a linear search
of features in a restricted area.
This shows that SLAM does not benefit as much as SfM from the presented
feature classifier. Instead, we can simply compute the Intra-Frame score, using
the features in a given grid cell and get the same performance as the classifier
of Hartmann et al.

Intra-Frame Track-Length

Regarding matchability, the proposed Intra-Frame Score makes the method of
Hartmann et al. less important. However, the Intra-Frame Score is not able
to pick features, that have a long track length. Figure 4.3 shows a comparison
of the classifier of Hartmann et al. and the Intra-Frame Score as well as using
no selection method at all. The Track length is considered, so a high amount
of features that can be viewed in multiple frames is desired. The Track Length
was computed on the PARK dataset from [1]. When using all features, most of
them have a small track length. 71% have a track length of just 2, whereas the
SfM classifier (red) only picks 60% and the Intra-Frame Score (orange) 66.8%.
Consequently, more features are selected which can be viewed in more than two
frames by the SfM classifier and the Intra-Frame Score. Nevertheless, the SfM
classifier picks more features with a high track length which can be observed,

4.3. COMPARISON OF FEATURE SCORES 33

Figure 4.3: Track Length for All features (blue), [1] (red) and Intra-Frame Score
(orange).

especially with the help of the most right bars. The number of features (track
length 6) selected by the SfM classifier (3.76%) is higher than the amount of
using all features (2.06%) or the Intra-Frame Score (2.53%).

To sum up, the Intra-Frame Score gives the same performance as the classi-
fier of Hartmann et al. However the Intra-Frame Score does not prefer features
that have a long track length. The main purpose of this work is to reduce the set
of features as much as possible by retaining long track features. This is achieved
to a certain degree by the classifier of Hartmann et al, but the Intra-Frame Score
does not give the desired results. In the following chapter, a classifier that is
better suited for this purpose is created.

34 CHAPTER 4. CLASSIFICATION WITH FEATURE SCORES

Chapter 5

Long-Track Features

Using the observations of chapter 4, we finally create the desired feature classi-
fier. We start with our training objective in section 5.1 by using features that
have a long track length. Finally, the training of the classifier and the generation
of the training data are are explained.

5.1 Track Length Criterion

As shown in chapter 4 the classifier of Hartmann et al. was only optimized
to improve the matching procedure. This is not sufficient for SLAM, thus, we
are going a step further and optimize our classifier to select only features, that
contribute to camera tracking. We distinguish the following sets of features:

Definition 5.1.

1. All: All available sift features.

2. Matchable: Matchable features according to definition 3.3

3. Geo: features that belong to a valid geometric reconstruction

4. Track≥n: features with a track length lager equal n

5. Trackmax: maximal track length.

The Matchable features are the ones, for which a sift match can be found. As
shown in figure 2.7, having a sift match does not imply a geometrically valid
3D point. These are contained in Geo. Besides a valid underlying 3D model,
Geo assumes that all images of a sequence can be registered with respect to the
reconstruction. Creating a 3D model out of a set of images, for each image a
position and orientation has to be computed. While Geo already uses a valid
3D model of a scene, the set of features needed for camera tracking can be

35

36 CHAPTER 5. LONG-TRACK FEATURES

restricted even further. Track≥n contains all features that belong to a valid
reconstruction as well as have a track length larger or equal to n. Thus, they
can be found in at least n consecutive frames of an image sequence and belong
to a valid geometrically 3D reconstruction.
This leads to the following inclusions:

All ⊇Matchable ⊇ Geo = Track1 ⊇ Trackn>1 (5.1)

Trackmax are the features having a maximal track length, but will still give
a valid reconstruction. For example, having 3 images I1, I2, I3 of the same
scene, but only I1 and I2 as well as I2 and I3 share the same scene view. This
gives tracks of at most t = 2, due to no feature can be found in all 3 images.
Thus, Trackmax = Track≥2. Figures 5.1 and 5.2 show the difference of Geo
and Track≥n. In figure 5.1 the points are so dense, that we can not distinguish

Figure 5.1: Geo features. All features that belong to a valid 3D reconstruction.

Figure 5.2: Track≥n features. features that belong to a 3D reconstruction and
have a track length greater than 3.

them and mainly see huge white areas. In figure 5.2, on the other hand, you
have to look really close to recognize single points.
Depending on the scene, Trackmax differs. Especially image sequences captured
at high frame rate result in a high track length. On the other side, sequences
captured with fast camera movements give shorter track length. Thus, we have
to find a good trade of for Trackmax:

Track≥1 ⊇ Track≥i ⊇ Trackmax ⊇ Track≥k (5.2)

To improve camera tracking, we use Trackmax to train our classifier. The set
Matchable is a superset of the feature set Hartmann et al. used to train their
SfM classifier:

Matchable ⊇ SfMClassifier ⊇ Geo

5.2. TRAINING OF THE SLAM CLASSIFIER 37

The features obtained by increasing the sift threshold do not fit into equation
5.1. By changing the parameters, you can always find a set of the same size
as the sets listed in equation 5.1. As already shown in [1], Matchable features
outperform features chosen with high sift thresholds. However, this has not to be
true for camera tracking. Camera tracking still works with only a few features,
while this is not sufficient to obtain a dense reconstruction for SfM. The results
of features using a high sift thresholds compared to a classifier optimized for
long track features can be found in section 7.5.
In [24] khan et al. also perform feature reduction. However, they concentrate on
image-based localization. Their main objective was to improve bag of words for
large scale image datasets. Similarly as Hartmann et al, they selected features
with long 2D track length, thus features for which definition 3.3 holds several
times. Nevertheless, they only work on the sift-matching level and do not take
the geometry of the underlying scene into account.
Finally, to train our SLAM classifier we select features that have a maximal
track length, but still can be used to obtain a 3D reconstruction in which each
image can be registered.

Training Objective 5.1 (Track Length).
The features, used for training feattraining are selected as follows:

Geo ⊃ feattraining ⊇ Trackmax

Hint: no strict inclusion for Geo.

5.2 Training of the SLAM Classifier

We take the PARK dataset of [1] for training. The original dataset contains
121 images with a resolution of 3024 × 2016. The images are captured with a
DSLR camera and most of the images are take with a wide baseline. Thus, the
distance of two consecutive images is approximately more than one meter. Due
to, some parts of the image sequence are challenging to create a single valid re-
construction, we decided to select three subsets for which we can find Trackmax

with Trackmax ⊂ Track≥1. Figure 5.3 shows three consecutive images from
PARK. While the first two images can easily be matched and give a valid recon-
struction, the third image suffers from large illumination changes. Registering
it with second image still works, but finding geometrically valid matches to the
first image does not work. Thus we can not obtain a valid 3D reconstruction
that gives camera poses for all images and uses tracks lager than two. Conse-
quently, we could only train a classifier with Geo ⊇ feattraining and being less
restrictive as the desired training objective 5.1. By picking 3 subsets we get a
strict inclusion for our training features and can optimize for obtaining a long
track length.

38 CHAPTER 5. LONG-TRACK FEATURES

Figure 5.3: Three consecutive images from PARK dataset [1]. Features with a
track length of 3 can not be found.

For training, the features need to be classified as positive or negative. We define
two disjoint sets of positive and negative sift features according to definition 5.2.

Definition 5.2 (Posivite & Negative Features).
The set of All features can be partitioned into positive and negative features.
The set of positive labeled features is given by:

featpos = Track≥n

The set of negative labeled features is given by:

featneg = All \ featpos

We want to point out that the definition of positive and negative features is only
valid with the context of this thesis. There is no overall definition of a positive
or negative feature.
The amount of features and images used by the different subsequences are shown
in table 5.1. The last column shows the track length which was used for a certain

sequence images features track length
sequ 1 17 36,506 2
sequ 2 29 25,083 3
sequ 3 9 9,162 2

sum 55 70,751

Table 5.1: Used images & features for training.

subsequence. In particular, for subsequence 2 a higher track length was used.
Due to the wide baseline of the images, features that are visible from very
different viewpoints are preserved.
The SLAM classifier is trained with 70, 751 positive as well as negative labeled
features. Due to, Track≥n is in general much smaller than All, the set of positive
features is much smaller than the set of negative features.

featneg � featpos (5.3)

5.2. TRAINING OF THE SLAM CLASSIFIER 39

For this reason we use a random selection of negative features to prevent an
imbalanced classifier. Additionally, we can distinguish two different subsets of
negative features as defined as followed:

Definition 5.3 (Non-Matchable & Short-Track Features).
The set of negative labeled features featneg can be split into two disjoint sets
featnomatch and featshort:

featneg ⊇ featnomatch ⊃ Geo

and:
featshort = featneg \ featnomatch

This gives negative features featnomatch which can not be matched at all and
features that have valid sift matches but do not fulfill the minimum track length
criterion of the training objective featshort. For these two sets have different car-
dinalities, similar to featpos and featneg in equation 5.3. The size of featshort
is much smaller than featnomatch:

featnomatch � featshort (5.4)

To not only construct featneg out of features taken from featnomatch, we ran-
domly pick the same amount features for both sets.
Hartmann et al. train a random forest for their SfM classifier. To prevent
adding unnecessary complexity we follow their idea and also train a random
forest. We use a depth of 25 and 25 trees. The tools used to obtain the training
features with their labels as well as the resulting random forest are presented in
chapter 6.

40 CHAPTER 5. LONG-TRACK FEATURES

Chapter 6

Used Software and Tools

This chapter gives a short overview of the tools used within the scope of this
thesis. These were used to create the training data as discussed in the previous
chapter as well as evaluation.

6.1 VL Feat

VLFeat [25] is used to extract sift features from images. VLFeat is an open
source library which implements popular computer vision algorithms, especially
for feature extraction and feature matching. For example there are implemen-
tations for HOG or MSER features [26][27] or KD-Trees [28] to speed up feature
matching. The main advantage of using VLFeat is the fact that, Hartmann et
all provide a random forest implementation included into VLFeat. Thus, the
feature classification process is encapsulated into the feature extraction step,
but also can be switched off. VLFeat builds the first building block of the pro-
cessing pipeline for both, creating test data as well as training data.
For creating test data we enable classification and give the path of a random
forest. Finally, VLFeat produces text files, containing the positive classified
features. For each single images, a file is created, which contains all features
within the image. These files can be handed over to Theia, presented in section
6.3, to build a 3D reconstruction with registered cameras.
To get training data, we switch off classification and use all feature which can
be found by VLFeat. Again, we get text files, containing the image features.
These are handed over to Bundler as well as Theia for further processing.

6.2 Bundler

Bundler [4] is a structure from motion software, which creates 3D reconstruc-
tions out of an unordered collection of images from the same scene. Hartmann
et al. use Bundler to check the 3D reconstruction by using their classifier as
well as a high sift threshold.

41

42 CHAPTER 6. USED SOFTWARE AND TOOLS

By taking feature files from VLFeat, as discussed in section 6.1, Bundler com-
pares each image against all other images and stores valid feature matches. We
adjusted Bundler, such that it produces two text files with image descriptors.
The matching text file contains all descriptors that have a matching partner in
another image, the non matching text file contains all descriptors for which no
match could be found. By doing so, we obtain the feature set featnomatch as
described in definition 5.3.

6.3 Theia SfM

Theia [29] is a structure from motion Library which is used in this thesis to
create 3D reconstructions with registered cameras. Furthermore, Theia is used
to compare the reconstructions of different methods (high DoG, Hartmann et al.
and ours) against each other. Thus, Theia provides statistics to evaluate how
many features can be reduces for each method and how accurate the resulting
camera poses are. Similar as in the work of Hartmann et al. a reconstruction
is creating, using all features. This reconstruction is used as ground truth and
compared with a significantly reduced feature set, created by the high DoG
method, the classifier of Hartmann et al. as well as our method.
Theia is the second building block of our processing pipeline. It reads the fea-
ture files created by VLFeat, matches all the features of different feature files
and uses the obtained matches to create a 3D reconstruction. To read in text
files, containing image features, we had to slightly adjust Theia.
Besides creating reconstructions and compare their qualities, Theia is also used
to create the feature sets featshort, as in definition 5.3 and featpos, as in def-
inition 5.2. We adjusted Theia, such that the feature descriptors of both sets
are stored in a single text file, respectively.
Consequently, we use a mix of Bundler and Theia to produce our training data.
The negative labeled training features featneg are crated with Bundler and
Theia: featneg = featnomatch ∪ featshort. Theia returns the set of all positive
labeled features featpos.

6.4 Random Forest Library

To perform feature classification as well as creating a classifier, the random forest
classifier template library (rf-library) by Stefan Walk [30] is used. To simplify
feature classification after feature extraction, Hartmann et al. implemented the
random forest code into VLFeat, as discussed in section 6.1. To train a classifier,
the rf-library needs two text files. One includes all positive labeled feature
descriptors, the other one contains all negative labeled feature descriptors. In
our project, these files are created with Bundler and Theia as described in
sections 6.3 and 6.2. Finally, the rf-library creates random forest as binary file.
To classify features, this can be used by VLFeat.

6.5. PROCESSING PIPELINE OVERVIEW 43

6.5 Processing Pipeline Overview

The processing steps of creating a 3D reconstruction is shown in figure 6.1.
Starting with input images, VLFeat extracts features and produces feature files.
Depending on whether the classification was enabled or not, the file content
differs. Afterwards, the files are handed over to Theia which creates a 3D
reconstruction. A reconstruction is considered valid, if there is a camera pose
for each input image. The quality of the reconstruction is used to check the
quality of a given classification method.

Training of a random forest is illustrated in figure 6.2. The feature files are

Figure 6.1: 3D reconstruction with classification.

create as in the previous case, but without classification enabled. The final
feature files are passed to Bundler and Theia which create the positive and
negative labeled features. The corresponding feature descriptors are used by
the random forest library to generate the final classifier.

Figure 6.2: Training

44 CHAPTER 6. USED SOFTWARE AND TOOLS

Chapter 7

Evaluation and Results

The improvements for SLAM and SfM, achieved by our classifier are presented
in this chapter. The datasets and baseline methods which are used to to eval-
uate our method are illustrated as well as the contributions of our approach.
We investigate the track length of the selected features and show that we can
filter our redundant image features that do not contribute to estimating the
camera pose. This is demonstrated by reducing the set of features selected by
our method as well as the baseline methods to a minimum and examining the
resulting camera accuracy. Additionally, we measure the saving of computation
time when using a lower amount of features as selected by our classifier.

7.1 Datasets

We are using two example scenes of the multi-view dataset denseMVS [31] to
evaluate our classifier. The first one, shown in figure 7.1, pictures the front of a
church. The second one, presented in figure 7.2, shows a fountain from multiple
viewpoints. We chose these two datasets, due to they have many overlapping

Figure 7.1: Church scene of the test dataset [31].

images. This mimics the SLAM scenario, in which a scene is discovered step-by-
step. In a SfM scenario on the other hand, it is common to have an unordered
image collection of a scene. The second reason why we chose this dataset is the
fact that it contains high-resolution images. Thus, we do not limit ourselves to

45

46 CHAPTER 7. EVALUATION AND RESULTS

Figure 7.2: Fountain scene of the test dataset [31].

use outdated hardware using low resolution cameras.
The dataset characteristics are as follows:

1. Canon D60 digital camera

2. images: 25

3. resolution: 3072× 2048

4. avg Features/Frame: 93, 641 (sift features)

7.2 Baseline Methods

We compare our classifier against the one created by Hartmann et al. Fur-
thermore, we compare against a feature selection created by increasing the sift
threshold. To check the quality of a reconstruction we create a reference recon-
struction, which uses no feature selection at all. This gives us 3 test reconstruc-
tions and one ground truth reconstruction.
We check, how much we can reduce the amount of features given a certain
method. Furthermore we check the quality of a reconstruction by picking ap-
proximately the same amount of features for each method. However, this was
not always possible, due to the final amount of 3D points produced by Theia is
not predictable.
The following abbreviation is used for the different methods.

• no cl: no classifier was used

• har-cl: Feature selection with the classifier of Hartmann et al.

• hDoG: Feature selection with high threshold for the DoG response.

• track-cl: Our classifier that preserves long track features.

In section 4.3, we compared the Intra-Frame Score with the random forest of
Hartmann et al. and showed similar quality with respect to matchability. Any-
how, we showed that the random forest preserves features with a long track
length better. For this reason, we do not consider the Intra-Frame Score in the
following tests, because there is already one counter example.

7.3. TRACK LENGTH COMPARISONS 47

7.3 Track length Comparisons

After computing a 3D reconstruction, Theia provides statistics about the amount
of features, with a certain track length. These are used to create track length
histograms for both test scenes. The track length is shown at the x-axis and
the amount of features having a certain track length at the y-axis. We do not
count, if a feature can be matched in several other images. Instead we sum the
views a 3D world point can be reprojected to.
Figure 7.4 shows that our classifier picks less features with a track length of 2,
but starts having more features for longer tracks. For a track length of 3, both
classifier perform nearly the same. Starting with a track length of 4 our classifier
demonstrates its benefits and a significant difference can be observed. Figure

Figure 7.3: Track Length for our classifier (blue), as well as [1] (red).

7.4 shows similar results. For the histogram bars for track length greater than
5 our classifier selects clearly more features. For tracks smaller than 5 har-cl
picks slightly more features. By having a look at the image sequence (appendix)
we can observe that the perspective changes from one image to another a much
smaller than for the church scene. This leads to more features with a high track
length and explains the even better performance of our classifier for this scene.

We excluded the statistics for the hDog method here. A high DoG response
leads to features in high frequent areas as shown in figure 7.8. In general such
areas are robust against viewpoint changes and therefore will produce features
with long tracks. However the amount of areas that give a high DoG response

48 CHAPTER 7. EVALUATION AND RESULTS

Figure 7.4: Track Length for our classifier (blue), as well as [1] (red).

are very limited for most scenes such that features can only be reduced to a
certain amount. This is explained in more detail in section section 7.4.2, where
a reconstruction using the hDoG method is not possible anymore, but a feature
reduction using our approach leads to nearly 50% less features.

7.4 Feature Reduction

7.4.1 Feature Reduction per Frame

Table 7.1 shows how much we can reduce the amount of features, using our
classifier. The first column shows the sum of all features, extracted in each
image of the sequence. The second column shows the average amount of features
per frame. Column three lists the amount of 3D points of the resulting 3D
reconstruction and the last column shows the mean reprojection error in pixel.
After creating a reconstruction, the obtained 3D points can be reprojected to the
registered views. By comparing these reprojections with the original sift-feature
positions, we can get a quality measure of the computed 3D points as well as
the computed camera poses. In both tables, we clearly see the advantage of the
SFM classifier. For the church scene, it selects less than the half of the features
in average as the high DoG method. For the fountain scene the classifier nearly

7.4. FEATURE REDUCTION 49

Church scene
feature amount avg features 3D points mean repr. error

all features 2136475 85459 150893 0.445066
high DoG 67543 2701 4624 0.416873

Hartmann et. al 139986 5599 9129 0.524981
Our Classifier 31331 1253 2836 0.351269

Fountain scene
feature amount avg features 3D points mean repr. error

all features 2545581 101823 221311 0.735637
high DoG 50686 2027 4596 0.746021

Hartmann et. al 39903 1596 2454 0.842059
Our Classifier 20379 815 1691 0.574793

Table 7.1: features per frame and mean reprojection error.

performs 50% better than the approach of Hartmann et al. Additionally in both
cases, the SfM classifier leads to a lower reprojection error, thus gives a better
reconstruction quality with approximately half the features. It is also worth to
mention, that for the church scene, the classifier of Hartmann et al. outperforms
the high DoG method, while it is the other way around, for the fountain scene.
The table also shows the amount of 3D points, after the reconstructions finishes.
Again, around 50% of 3D points are sufficient for our classifier to achieve a
reconstruction with a lower reprojection error.
In contrast to using all features, all three methods reduce the amount of data
significantly. For the church dataset, our classifier only picks 0.015% of the
available features. For the fountain dataset, a reduction to even 0.008% is
achieved.
Curiously, when using all features, the reprojection error is lower. This is due to
the high amount of outliers, which is disdussed in more detain in sectino 7.4.3.

7.4.2 Maximum Feature Reduction

To demonstrate the limits of the different feature reduction methods, thresholds
are increased until Theia was not able to register all cameras anymore. Only
for our classifier the threshold remains below this limit, so all 25 images are
assigned a position and rotation within the 3D model. Table 7.2 shows that our
classifier creates a 3D model with less 3D points than the classifier of Hartmann
et al. as well as an increased DoG. While our method is still able to register all
cameras, the baseline methods are not. Additionally, our approach selects less
2D feature points per frame, in average. Thus, less data is handed over to the
subsequent SfM pipeline, but the 3D reconstruction is still better.

50 CHAPTER 7. EVALUATION AND RESULTS

Church scene
3D points avg. features reg. cameras

high DoG 4043 2397 24
Hartmann et. al 8220 5188 24

Our Classifier 2836 1253 25

Fountain scene
3D points avg. features reg. cameras

high DoG 3154 1471 22
Hartmann et. al 1864 1334 24

Our Classifier 1691 815 25

Table 7.2: Limits of baseline methods. Our methods can register all cameras,
while the high DoG method and [1] register fewer cameras.

7.4.3 Point Clouds

Figure 7.5 shows the different point clouds for the church scene 7.1, after running
reconstruction with Theia. When using all features, a lot of redundant informa-

Figure 7.5: Surviving features for the different methods. Top left: all features.
Top right: SfM classifier[1]. Bottom left: high DoG. Bottom right: our classifier.

tion remains in the final reconstruction, which is obviously not ideal for camera
tracking. For the classifier of Hartmann et al, the structure of the church is well
recognizable, but compared to the other two approaches the amount features is
still very high. While the point cloud for the high DoG approach is even more
spare, the one created our classifier is barley recognizable with the human eye.
The exact amount of 3D points can be looked up in section 7.4.1. This section
also shows a higher quality of the 3D model using our approach with respect to
the mean reprojection error.

7.4. FEATURE REDUCTION 51

Even better observations can be made for the second dataset, pictured in figure
7.6. Using all features results in a dense point cloud having much redundant

Figure 7.6: Surviving features for fountain scene. Top left: all features. Top
right: SfM classifier[1]. Bottom left: high DoG. Bottom right: our classifier.

information. Although the classifier of Hartmann et al. and the approach us-
ing a high DoG have more features spread over the whole scene, these are not
the features with the highest track length. Observing the whole fountain scene
(appendix) shows the visibility of the fountain and the wall behind in every
image. The surrounding buildings on the other hand are only exposed in the
latest images of the sequence. For this reason, a feature reduction that prefers
features around the fountain is able to register all camera poses. When reducing
features such that most features belong to the buildings in the background, it
is likely that such an image can not be fitted into the remaining scene. This
demonstrates the tendency of our classifier to select features that can viewed in
as many images as possible.

52 CHAPTER 7. EVALUATION AND RESULTS

7.4.4 Outlier Reduction

Figure 7.7 shows the reconstructions for all 4 methods from a side view (church
scene). What stands out, is the high amount of features, which seem to fly
in the air, especially when using all features. Inspecting the whole image se-
quence (appendix), these features are clearly outliers and should not remain
in a reconstruction. When using one of the three feature reduction methods,
the amount of outliers is reduced. However we can not provide a quantitative
measurement at this point, because you have to manually filter out and decide
which points are outliers. To perform camera pose estimation as accurate as

Figure 7.7: Side view of the reconstruction with surviving features. Top left:
all features. Top right: SfM classifier[1]. Bottom left: high DoG. Bottom right:
our classifier.

possible, a detailed 3D model is needed. The mentioned kind of outliers perturb
the 3D model and consequently tracking accuracy decreases. The outliers can
not be removed by the outlier detection used by Theia. For camera tracking
applications such errors accumulate and will finally make tracking unfeasible.
This emphasizes the need of feature reduction methods. While figure 7.7 shows
fewer outlier for our method this is clearly an advantage for most SLAM and
SfM applications.

7.4. FEATURE REDUCTION 53

7.4.5 Feature Distribution

After reducing features to a minimum, the distribution of features is investi-
gated. This is show by figure 7.8 for the different methods. The first row shows

Figure 7.8: Feature distribution when reducing amount of feature. Top: high
DoG with 1945 (left) and 5074 (right) features. Middle: har-cl with 1566 (left)
and 1867 (right) features. Bottom: Our classifier with 824 (left) and 570 (right)
features.

the result for the high DoG method which clearly selects features in areas where
you can find many structural elements like the parts of the buildings. As already
shown for the point clouds in section 7.4.3, features that belong to the buildings
do not contribute best for camera tracking. The fountain and the wall behind
it are visible in all images of the sequence (appendix), while the buildings are
not. Thus, reducing features to a minimum should select features around the
fountain. In particular, in the right image of the high DoG method, reducing

54 CHAPTER 7. EVALUATION AND RESULTS

features will exclusively pick features that belong to the buildings. These fea-
tures can not be registered with the rest of the scene and for this reason there
no camera pose can be estimated.
The better distribution of features, such that they have a high track length
leads to less features for our classifier. In the first view, our approach achieves
a reduction of 57% compared to the high DoG method and 47% compared to
the classifier of Hartmann et al, the second view results in a reduction of 88%
and 69% respectively.

7.5 Camera Pose Accuracy

The camera accuracy is measured by comparing a reconstruction with reduced
features to the reconstruction which uses all available features. Thus, using all
features is considered as ground truth. The reduced reconstruction is aligned to
the ground truth reconstruction with a similarity transformation. Afterwards,
for all cameras pairs of both reconstructions, the error of its position and rotation
is measured and an average value computed. The results are shown in table 7.3.
Our classifier results in less 3D points, but still achieves a lower position as well

Fountain scene
3D points mean position error mean rotation error

high DoG 4624 0.005991 0.004881
Hartmann et. al 9129 0.006487 0.002644

Our Classifier 3586 0.005087 0.001826

3D points mean position error mean rotation error
Fountain scene

high DoG 4596 0.033531 0.009252
Hartmann et. al 2454 0.034065 0.013414

Our Classifier 1691 0.025814 0.002521

Table 7.3: Camera rotation & position errors. Upper table: Church scene.
Lower table: Fountain scene.

as rotation error in both scenes. This shows that the features that are chosen
by our method are more valuable for obtaining the pose of a camera.
The reconstructions are generated without including any information about the
camera poses, thus the reconstructions have no fixed scale. This also means that
the rotation and position errors are relative to some scaling factor. Nevertheless,
this does not change the accuracy of our method with respect to the high DoG
approach or the classifier of Hartmann et al.

7.6. TIMINGS 55

7.6 Timings

To quantify the speed-up of our classifier, the average feature matching time, as
well as the time needed to perform bundle adjustment was investigated. Theia
was executed with two frames only. A full bundle adjustment of several frames
would even take longer. Furthermore, a larger scene with more 3D world points
influences bundle adjustment even more.
Systems like ORB-SLAM [6] use bundle adjustment in each tracking step to get
the pose of the camera. However, they only use a small part of the scene. By
sticking with only two frames, we limit the scene to a minimum but still can
detect improvements by our method. The results are listed in table . Due to the

features feature matching bundle adjustment
all features 85459 3.477 0.146

Hartmann et. al 5263 0.0695 0.0162
Our Classifier 2107 0.0239 0.011

Table 7.4: Average timings for church scene.

fewer features selected by our classifier we can gain a bundle adjustment speed-
up of 67% compared to the classifier of Hartmann et al. Different than shown in
table 7.1, the threshold for our random forest was chosen less restrictive, because
only two frames are considered and a reconstruction with fewer features was not
possible. For this reason 2107 features were used rather than 1253 which is the
average for our classifier for the church scene. However, even with less restricting
settings, our classifier still outperforms the classifier of Hartmann et al.
When using a SLAM setup as used in ORB-SLAM, where bundle adjustment
is performed for every frame and real time bounds have to be considered, an
decrease in computation time from 0.0162s to 0.011s (67%) gives a significant
speed-up.

56 CHAPTER 7. EVALUATION AND RESULTS

Part III

Conclusions and Outlook

57

Chapter 8

Future Work

This thesis shows the advantages of using a classifier that preserves long track
image features to reduce the amount of data a SfM or SLAM pipeline has to
process. While the amount of features can be lowered significantly, there are
several concept to improve the presented method.
During the training phase, the features are labeled positive, if they can be viewed
in a minimal amount of views and they belong to a valid 3D reconstruction. For
future research one can go a step further and assign different weights to the
different feature classes presented in section 5.1. By doing so, a feature that is
not matchable at all penalizes the result more than features that belong to a
valid reconstruction but do not fulfill the minimum track length criterion.
Another penalization strategy can involve different weights for specular areas.
Such areas are sensitive for most feature detectors, but depend strongly on the
viewing angle. Thus, they should no be considered by reconstruction as used in
most SfM or SLAM approaches.
As illustrated in figure 7.7, the final reconstructions still include outliers which
are not removed by the outlier detection. By manually labeling such features
followed by learning a classifier we can try to get rid of these kind of outliers.
However, this includes a lot of manually interactions.

In the used SfM framework for evaluation, feature extraction and matching takes
a lot of time. Although the proposed classifier speeds-up these steps significantly
a further improvemnt can be achieved by using the GPU implementation of sift
[32]. In particular the slow matching process for sift features is the main reason
why most modern SLAM systems prefer binary features. Using our classifier as
well as GPU-Sift could lead to a accurate real-time SLAM system which makes
use of the accuracy of sift. Alternatively, an approach as presented in [33] can
be used to speed up feature matching.

Of course, all assumptions made in section 5.1 are not restricted to sift features
only. By training a random forest for binary features like BRISK or FAST, the
ideas can be tested for features that can be matched much faster.

59

60 CHAPTER 8. FUTURE WORK

In [34] and [35] SLAM concepts are presented which also work in partly dy-
namic environments. By separating features that belong to a dynamic part or
a static part of the scene, a new classifier can be trained. Afterwards, it can be
tested, if features in moving scene areas can be predicted in advance.

This shows the importance of this work. Although the long track classifier
was already able to reduce the amount of features significantly, there are plenty
of research topics available in this area.

Chapter 9

Conclusion

In this thesis a classifier was created which improves the processing steps of a
SLAM or SfM pipeline by decreasing the amount of redundant data for camera
pose estimation. Handing over a reduced set of image features speeds-up SfM
as well as SLAM without degrading the tracking accuracy. Additionally, the
amount of outliers is reduced, such that the resulting 3D model is less perturbed.
We ware able to show a feature reduction of nearly 50% in average. Furthermore,
a better distribution of image features was achieved, such that camera pose
estimation works fewer data. The features that are selected by the created
classifier have a long track length, thus can be seen in as many views as possible.
The reduction of features also leads to a less computationally SLAM or SfM
pipeline.

61

62 CHAPTER 9. CONCLUSION

Part IV

Appendix

63

Evaluation Scenes

65

66

Figure 9.1: fountain scene [31].

67

Figure 9.2: church scene [31].

68

List of Figures

1.1 AR ToolKit . 4
1.2 Large number of features . 6

2.1 PTAM . 11
2.2 Symmetry features . 14
2.3 Predicting Matchability quantitative 16
2.4 Hartmann ROC curves . 17
2.5 Reduction for Matchability . 17
2.6 Matchability speed-up . 18
2.7 Wrong matching . 19

3.1 Sift histogram . 22
3.2 Decision tree example . 24

4.1 NN2 ROC curve . 31
4.2 NN2 and SfM classifier . 31
4.3 NN2 Track Length . 33

5.1 Training with Geo features . 36
5.2 training with track length features 36
5.3 Training images . 38

6.1 Test Pipeline . 43
6.2 Training Pipeline . 43

7.1 Church scene of the test dataset [31]. 45
7.2 Fountain scene of the test dataset [31]. 46
7.3 Track length classifier . 47
7.4 Track Length Classifier 2 . 48
7.5 Point clouds . 50
7.6 Point clouds 2 . 51
7.7 Outlier . 52
7.8 Feature distribution . 53

9.1 fountain scene [31]. 66

69

70 LIST OF FIGURES

9.2 church scene [31]. 67

List of Tables

4.1 Matching: ann vs classifier . 32

5.1 Used images & features for training. 38

7.1 Avg feature reduction per frame 49
7.2 Limits of basline methods . 50
7.3 Camera pose accuracy . 54
7.4 Average timings . 55

71

72 LIST OF TABLES

Bibliography

[1] W. Hartmann, M. Havlena, and K. Schindler, “Predicting matchability,” in
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference
on, pp. 9–16, June 2014.

[2] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for
a video-based augmented reality conferencing system,” in Proceedings of
the 2nd International Workshop on Augmented Reality (IWAR 99), (San
Francisco, USA), Oct. 1999.

[3] N. Technologies, “ncam camera tracking.”

[4] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring photo
collections in 3d,” in ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06,
(New York, NY, USA), pp. 835–846, ACM, 2006.

[5] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
vol. 60, (Hingham, MA, USA), pp. 91–110, Kluwer Academic Publishers,
Nov. 2004.

[6] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in Computer Vision (ICCV), 2011 IEEE Inter-
national Conference on, pp. 2564–2571, Nov 2011.

[7] S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust invariant
scalable keypoints,” in Computer Vision (ICCV), 2011 IEEE International
Conference on, pp. 2548–2555, Nov 2011.

[8] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in Proceedings of the 9th European Conference on Computer
Vision - Volume Part I, ECCV’06, (Berlin, Heidelberg), pp. 430–443,
Springer-Verlag, 2006.

[9] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and lo-
calization for an autonomous mobile robot,” in Intelligent Robots and
Systems ’91. ’Intelligence for Mechanical Systems, Proceedings IROS ’91.
IEEE/RSJ International Workshop on, pp. 1442–1447 vol.3, Nov 1991.

73

74 BIBLIOGRAPHY

[10] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Editors choice article:
Visual slam: Why filter?,” Image Vision Comput., vol. 30, pp. 65–77, Feb.
2012.

[11] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07), (Nara, Japan), November
2007.

[12] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“Kinectfusion: Real-time 3d reconstruction and interaction using a moving
depth camera,” ACM Symposium on User Interface Software and Technol-
ogy, October 2011.

[13] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear optimization,”
Int. J. Rob. Res., vol. 34, pp. 314–334, Mar. 2015.

[14] H. Stewénius, C. Engels, and D. Nistér, “Recent developments on direct
relative orientation,” 2006.

[15] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second ed., 2004.

[16] D. Gálvez-López and J. D. Tardós, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics, vol. 28,
pp. 1188–1197, October 2012.

[17] D. Hauagge and N. Snavely, “Image matching using local symmetry fea-
tures,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pp. 206–213, June 2012.

[18] G. Zhang and P. A. Vela, “Good features to track for visual slam,” June
2015.

[19] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” J. ACM, vol. 45, pp. 891–923, Nov. 1998.

[20] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions
via hashing,” in Proceedings of the 25th International Conference on Very
Large Data Bases, VLDB ’99, (San Francisco, CA, USA), pp. 518–529,
Morgan Kaufmann Publishers Inc., 1999.

[21] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, Oct. 2001.

[22] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Re-
gression Trees. Monterey, CA: Wadsworth and Brooks, 1984. new edition.

BIBLIOGRAPHY 75

[23] C. E. Shannon, “A mathematical theory of communication,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 5, pp. 3–55, Jan. 2001.

[24] N. khan, B. McCane, and S. Mills, “Feature set reduction for image match-
ing in large scale environments,” in Proceedings of the 27th Conference on
Image and Vision Computing New Zealand, IVCNZ ’12, (New York, NY,
USA), pp. 67–72, ACM, 2012.

[25] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms.” http://www.vlfeat.org/, 2008.

[26] N. Dalal and B. Triggs, “Histograms of oriented gradients for human de-
tection,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, vol. 1, pp. 886–893 vol. 1, June
2005.

[27] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide baseline
stereo from maximally stable extremal regions,” in Proceedings of the
British Machine Vision Conference, pp. 36.1–36.10, BMVA Press, 2002.
doi:10.5244/C.16.36.

[28] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image descrip-
tor matching,” in Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pp. 1–8, June 2008.

[29] C. Sweeney, Theia Multiview Geometry Library: Tutorial & Reference. Uni-
versity of California Santa Barbara.

[30] W. Stefan, “random-forests.” https://github.com/stefan-w/

random-forests, 2012.

[31] C. Strecha, W. von Hansen, L. Van Gool, P. Fua, and U. Thoennessen, “On
benchmarking camera calibration and multi-view stereo for high resolution
imagery,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pp. 1–8, June 2008.

[32] C. Wu, “SiftGPU: A GPU implementation of scale invariant feature trans-
form (SIFT).” http://cs.unc.edu/~ccwu/siftgpu, 2007.

[33] F. Alhwarin, D. Ristić-Durrant, and A. Gräser, “Vf-sift: Very fast sift fea-
ture matching,” in Proceedings of the 32Nd DAGM Conference on Pattern
Recognition, (Berlin, Heidelberg), pp. 222–231, Springer-Verlag, 2010.

[34] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao, “Robust monocular slam
in dynamic environments,” in Mixed and Augmented Reality (ISMAR),
2013 IEEE International Symposium on, pp. 209–218, Oct 2013.

[35] P. Alcantarilla, J. Yebes, J. Almazan, and L. Bergasa, “On combining visual
slam and dense scene flow to increase the robustness of localization and
mapping in dynamic environments,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on, pp. 1290–1297, May 2012.

http://www.vlfeat.org/
https://github.com/stefan-w/random-forests
https://github.com/stefan-w/random-forests
http://cs.unc.edu/~ccwu/siftgpu

76 BIBLIOGRAPHY

	I Introduction & Basic Concepts
	Motivation
	Applications
	Augmented Reality
	Structure from Motion

	Challenges for Mobile Devices
	Contribution of the Thesis
	Outline

	Related Work
	Advancements in visual SLAM
	SLAM in a nutshell - PTAM
	Initialization
	Keyframes and Map Building
	Camera tracking
	Limitations of PTAM

	Significant Feature Selection
	Utilize Symmetry Properties
	Good Features to Track for Visual SLAM
	Predicting Matchability

	Benefits of Feature Classification
	Deficits of Matchable Features

	Preliminaries for Feature Selection
	SIFT
	Feature Matching
	Random Forest
	Decision Trees
	Splitting Criterion - Gini Impurity
	From Decision Trees to Random Forest

	II Feature Classification for Visual SLAM
	Classification with Feature Scores
	Next-Frame Score
	Intra-Frame Score
	Comparison of Feature Scores

	Long-Track Features
	Track Length Criterion
	Training of the SLAM Classifier

	Used Software and Tools
	VL Feat
	Bundler
	Theia SfM
	Random Forest Library
	Processing Pipeline Overview

	Evaluation and Results
	Datasets
	Baseline Methods
	Track length Comparisons
	Feature Reduction
	Feature Reduction per Frame
	Maximum Feature Reduction
	Point Clouds
	Outlier Reduction
	Feature Distribution

	Camera Pose Accuracy
	Timings

	III Conclusions and Outlook
	Future Work
	Conclusion

	IV Appendix
	List of Figures
	Bibliography

