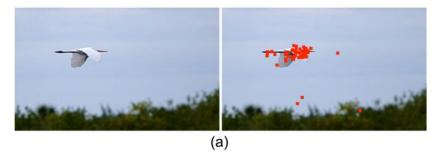


Egocentric Computer Vision

Progress Presentation

Rui Xu Jonas Scheer

Outline



- Idea
- Final Project State
- Implemented Saliency Models
- Results
- Further Work

Idea

- Saliency maps in egocentric setting
- evaluate saliency prediction models in egocentric setting
- egocentric vs. non-egocentric saliency prediction

http://cs-people.bu.edu/jmzhang/BMS/BMS iccv13 preprint.pdf

Final State - saliency models

- Working saliency prediction model
 - o BMS
 - RARE
 - o SCIA
 - o SWD
 - GBVS

Top ranked models from MIT Bechnmark

- 6 Videos (3 Viewers)
 - → around 1500 images with gazing data

Final State - Evaluation Software

Software Framework

- command line software
- easy to extract images from videos

```
./saliencyEstimator -extract <video folder 1> <video folder 3> <video folder 3> ...
```

easy to evaluate a model

```
./saliencyEstimator -nss <saliencyMap_folder_1> <fixation_data_1> <saliencyMap_folder_1> <fixation_data_2>
```

. . .

Matlab code to produce saliency models (http://saliency.mit.edu/)

Evaluation - NSS Value

- Different metrics to evaluate the saliency map quality
 - o Receiver Operating Characteristic, Earth Mover's Distance, Similarity
 - Not applicable in egocentric setting
- → NSS (Normalized Scanpath Saliency)
 - Available data: Saliency map for video frame M_i & corresponding fixation data F_i
 - o standardize M, (zero mean & unit standard deviation)

$$Z_{SM}(x) = \frac{SM(x) - \mu}{\sigma}$$

where Z_{SM} is the standardized saliency map and

$$\mu = \frac{1}{|I|} \sum_{t \in I} SM(x_t)$$

$$\sigma = \sqrt{\frac{1}{|I|} \sum_{t \in I} (SM(x_t) - \mu)^2}$$

(Olivier Le Meur & Thierry Baccino - Behavior Research Methods)

Saliency Model - BMS

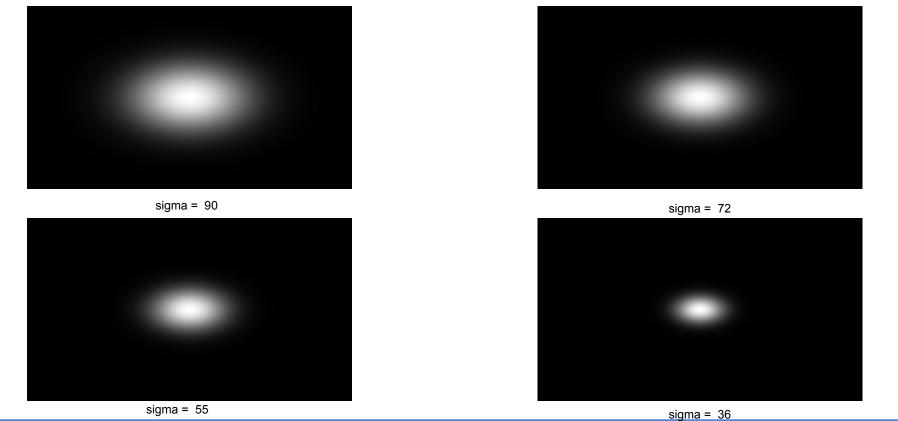
Saliency Model - SCIA

- Bayesian Model
- Multi-scale measurement
- Need prior to get good estimation

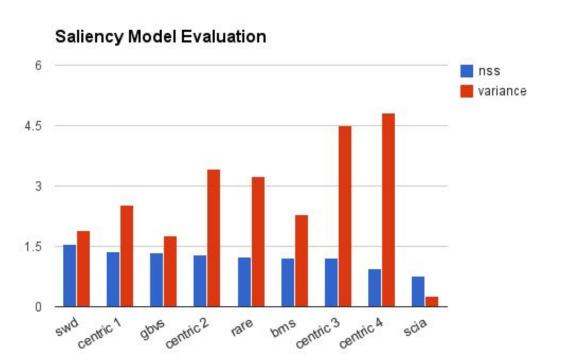
Model - Spatially Weighted Dissimilarity Saliency (SWD)

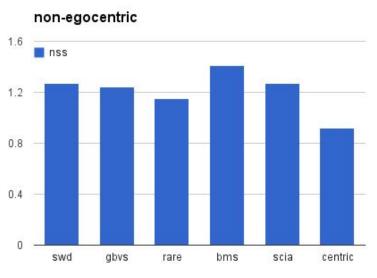
- Feature: Principal Component
- measurement
 - dissimilarity
 - spatial distance

Saliency Model - GBVS


Saliency Model - RARE

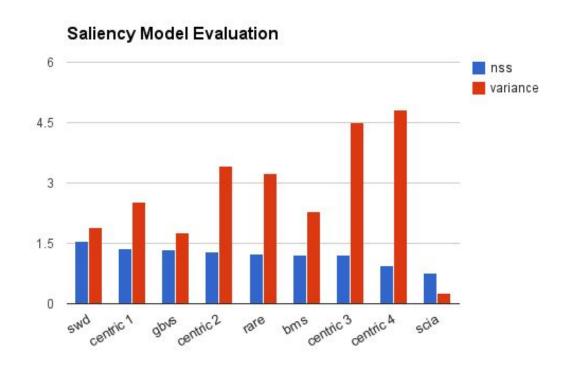
Baseline - centric





Saarland University - Perceptual User Interfaces Group

Results



Results

- users turns his head instead of moving his eyes
- → user mostly looks at the center

Further Work

- Record more data
 - more robust testing
- Build a whole eco-system for Benchmarking saliency models in egocentric setting
 - similar to MIT
 - matlab template file

Reference

- Saliency detection: a boolean map approach[ICCV2013]
- Fast and efficient saliency detection using sparse sampling and kernel density estimation [Image Analysis 2011]
- Visual Saliency Detection by Spatially Weighted Dissimilarity[CVPR2011]
- Graph-Based Visual Saliency [NIPS 2006]
- RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis