# 

## LEARNING FEATURES FOR VISUAL SLAM & SFM

### Jonas Scheer, Mario Fritz, Oliver Grau

#### Abstract

Reducing the amount of image features as in [1] speedsup SfM computation time, but still leaves a lot of redundant information. Our approach aims a higher feature reduction, by applying a classifier (random forest), optimized for SLAM/SfM. The main advantages are:

#### Feature Reduction

Comparison with [1] and hDog (reducing features by increasing the sift threshold)

- 48% feature reduction
- Lower reproduction error —> more accurate 3D model
- Computational speed-up, due to fewer features
- Higher accuracy, due to lower amount of outliers
- Less redundant data in a SfM/SLAM pipeline

#### Predicting Matchability

Hartmann et al. [1] deploy a classifier, optimized for feature matching:

- Predicting SIFT [5] feature matches
- Speed-up subsequent matching procedure

#### Drawbacks:

- Predicting a single sift match does not consider the whole scene.
- wrong sift matches, according to an underlying 3D model

| Fountain scene  |                |              |           |                  |  |  |
|-----------------|----------------|--------------|-----------|------------------|--|--|
|                 | feature amount | avg features | 3D points | mean repr. error |  |  |
| all features    | 2545581        | 101823       | 221311    | 0.735637         |  |  |
| high DoG        | 50686          | 2027         | 4596      | 0.746021         |  |  |
| Hartmann et. al | 39903          | 1596         | 2454      | 0.842059         |  |  |
| Our Classifier  | 20379          | 815          | 1691      | 0.574793         |  |  |

#### Accuracy & Speed-up

We Create a reconstruction with all features and align the reconstructions with reduced features and compute the rotation & position error:

- Position error: 15% lower
- Rotation error: up to 30% lower

| Fountain scene  |           |                     |                     |  |  |  |
|-----------------|-----------|---------------------|---------------------|--|--|--|
|                 | 3D points | mean position error | mean rotation error |  |  |  |
| high DoG        | 4624      | 0.005991            | 0.004881            |  |  |  |
| Hartmann et. al | 9129      | 0.006487            | 0.002644            |  |  |  |
| Our Classifier  | 3586      | 0.005087            | 0.001826            |  |  |  |

- Computational speed-up: 60% (BA); 34% (Matching)



(geometrically wrong matching of 3D scene points)



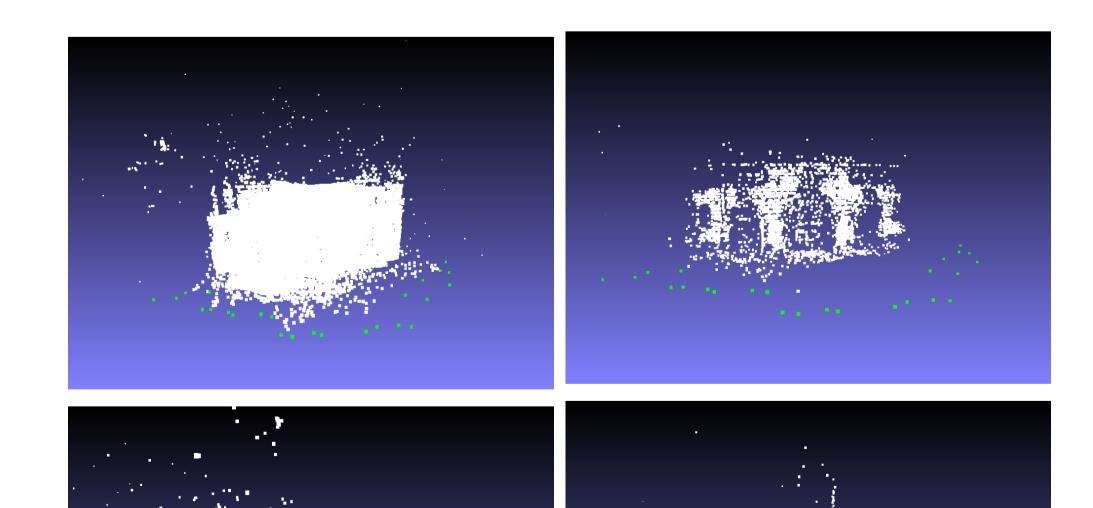
(geometrically wrong matches across scenes)

#### Training with Long-Track Features

|                 | features | feature matching | bundle adjustment |
|-----------------|----------|------------------|-------------------|
| all features    | 85459    | 3.477            | 0.146             |
| Hartmann et. al | 5263     | 0.0695           | 0.0162            |
| Our Classifier  | 2107     | 0.0239           | 0.011             |

#### Point clouds & Outlier

- Dense model with many outliers (left)
- 3D model by using long-track features (right)



**Solution:** Training with more appropriate features as in [1]

 $All \supseteq Matchable \supseteq Geo = Track_1 \supseteq Track_{n>1}$ 

All:All available sift featuresMatchable:Features with valid sift-match as in [1]Geo:Features with valid 3D pointTrackn:Features viewable from n cameras

—> Training Random-Forest [3] with Long-Track Features



#### References

[1] Predicting Matchability - W. Hartmann, M. Havlena, K. Schindler - CVPR 2014
[2] D. G. Lowe, "Distinctive image features from scale-invariant keypoints,"
[3] W. Stefan, "random-forests." https://github.com/stefan-w



